Минимальное N (3 часть). №5 ЕГЭ

3 часть подборки заданий, в которых нужно определить минимальное N по заданному алгоритму и результату его работы.

Подробнее о решении в Максимальное N (1 часть).

№6E67FD

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится троичная запись числа N.

2. Далее эта запись обрабатывается по следующему правилу:

а) если число N делится на 3, то к этой записи дописываются две последние троичные цифры;

б) если число N на 3 не делится, то остаток от деления умножается на 5, переводится в троичную запись и дописывается в конец числа.

Полученная таким образом запись является троичной записью искомого числа R.

3. Результат переводится в десятичную систему и выводится на экран.

Например, для исходного числа 11 = 1023 результатом является число 1021013 = 307, а для исходного числа 6 = 203 это число 20203 = 60.

Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, не меньшее 86.

программа

минимальное N 3_1

результат

5


№AB1E4C

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. Далее эта запись обрабатывается по следующему правилу:

а) если число N делится на 3, то к этой записи дописываются три последние двоичные цифры;

б) если число N на 3 не делится, то остаток от деления умножается на 3, переводится в двоичную запись и дописывается в конец числа.

Полученная таким образом запись является двоичной записью искомого числа R.

3. Результат переводится в десятичную систему и выводится на экран.

Например, для исходного числа 12 = 11002 результатом является число 11001002 = 100, а для исходного числа 4 = 1002 результатом является число 100112 = 19.

Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, не меньшее чем 76.

решение

минимальное N 3_2

результат

11

Accordion title 3


№C412B3

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. К этой записи дописываются справа ещё несколько разрядов по следующему правилу:

а) если N чётное, то к нему справа приписываются два нуля, а слева единица;

б) если N нечётное, то к нему справа приписывается в двоичном виде сумма цифр его двоичной записи;

Полученная таким образом запись (в ней как минимум на один разряд больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Например, исходное число 410 = 1002 преобразуется в число 110000= 4810, а исходное число 1310 = 11012 преобразуется в число 110111= 5510.

Укажите такое наименьшее число N, для которого число R больше числа 190. В ответе запишите это число в десятичной системе счисления.

решение

минимальное N 3_3

результат

16


№D588C0

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. К этой записи дописываются справа ещё два разряда по следующему правилу:

а) складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;

б) над этой записью производятся те же действия –– справа дописывается остаток от деления суммы её цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите такое наименьшее число N, для которого результат работы данного алгоритма больше десятичного числа 101. В ответе это число запишите в десятичной системе счисления.

программа

По алгоритму, если первое дописанное число 1, то второе 0, а если первое 0, то второе 1.

результат

25


№D58576

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. К этой записи дописываются справа ещё два разряда по следующему правилу:

а) складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;

б) над этой записью производятся те же действия –– справа дописывается остаток от деления суммы её цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите такое наименьшее число N, для которого результат работы данного алгоритма больше числа 77. В ответе это число запишите в десятичной системе счисления.

решение

Изменения в программе предыдущей задачи:

for N in range(1, 77):
if number(N) > 77:

результат

19

Примеры из Банка заданий ЕГЭ